Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles
Autonomous driving systems are highly expected to be used on public roads to improve traffic throughput and road safety, but it will likely take a long transition period before all human-driven vehicles can be replaces with autonomous vehicles. Hence, CAVs have to safely cooperate with the surroundi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Open Journal of Vehicular Technology |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9789256/ |
_version_ | 1797978881602355200 |
---|---|
author | Shunsuke Aoki Ragunathan Rajkumar |
author_facet | Shunsuke Aoki Ragunathan Rajkumar |
author_sort | Shunsuke Aoki |
collection | DOAJ |
description | Autonomous driving systems are highly expected to be used on public roads to improve traffic throughput and road safety, but it will likely take a long transition period before all human-driven vehicles can be replaces with autonomous vehicles. Hence, CAVs have to safely cooperate with the surrounding human drivers, in order to gain the benefits of autonomous driving technologies during such transition periods. In this paper, we present a Distributed Synchronous Intersection Protocol (DSIP) and a Cooperative Perception-based High-Definition Map (CP-HD Map) for mixed traffic environments, in which autonomous vehicles co-exist with human-driven vehicles. First, in DSIP, each CAV utilizes dynamic decision-making mechanisms to adaptively change the vehicle behaviors based on the surrounding environments by using <italic>vehicle states</italic> and <italic>vehicle mode</italic>. In addition, in CP-HD Map, each CAV uses Vehicle-to-Vehicle (V2V) communications to share the information of detected objects to improve the road safety in the mixed traffic environments. Under these protocols, human-driven vehicles simply follow the traffic lights just like they do today. Finally, we show that DSIP and CP-HD Map increase the traffic throughput around the road intersections when we compared to existing signalized intersections and other V2V communications-based protocols. |
first_indexed | 2024-04-11T05:30:07Z |
format | Article |
id | doaj.art-2c4b6b6976e8459d9f188aa24ef0bd65 |
institution | Directory Open Access Journal |
issn | 2644-1330 |
language | English |
last_indexed | 2024-04-11T05:30:07Z |
publishDate | 2022-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Open Journal of Vehicular Technology |
spelling | doaj.art-2c4b6b6976e8459d9f188aa24ef0bd652022-12-23T00:00:54ZengIEEEIEEE Open Journal of Vehicular Technology2644-13302022-01-01325126510.1109/OJVT.2022.31774379789256Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous VehiclesShunsuke Aoki0https://orcid.org/0000-0002-3331-2778Ragunathan Rajkumar1National Institute of Informatics, Tokyo, JapanDepartment of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USAAutonomous driving systems are highly expected to be used on public roads to improve traffic throughput and road safety, but it will likely take a long transition period before all human-driven vehicles can be replaces with autonomous vehicles. Hence, CAVs have to safely cooperate with the surrounding human drivers, in order to gain the benefits of autonomous driving technologies during such transition periods. In this paper, we present a Distributed Synchronous Intersection Protocol (DSIP) and a Cooperative Perception-based High-Definition Map (CP-HD Map) for mixed traffic environments, in which autonomous vehicles co-exist with human-driven vehicles. First, in DSIP, each CAV utilizes dynamic decision-making mechanisms to adaptively change the vehicle behaviors based on the surrounding environments by using <italic>vehicle states</italic> and <italic>vehicle mode</italic>. In addition, in CP-HD Map, each CAV uses Vehicle-to-Vehicle (V2V) communications to share the information of detected objects to improve the road safety in the mixed traffic environments. Under these protocols, human-driven vehicles simply follow the traffic lights just like they do today. Finally, we show that DSIP and CP-HD Map increase the traffic throughput around the road intersections when we compared to existing signalized intersections and other V2V communications-based protocols.https://ieeexplore.ieee.org/document/9789256/Autonomous vehiclesconnected vehiclesintersection managementintelligent transportation systemsvehicular networks |
spellingShingle | Shunsuke Aoki Ragunathan Rajkumar Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles IEEE Open Journal of Vehicular Technology Autonomous vehicles connected vehicles intersection management intelligent transportation systems vehicular networks |
title | Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles |
title_full | Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles |
title_fullStr | Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles |
title_full_unstemmed | Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles |
title_short | Safe Intersection Management With Cooperative Perception for Mixed Traffic of Human-Driven and Autonomous Vehicles |
title_sort | safe intersection management with cooperative perception for mixed traffic of human driven and autonomous vehicles |
topic | Autonomous vehicles connected vehicles intersection management intelligent transportation systems vehicular networks |
url | https://ieeexplore.ieee.org/document/9789256/ |
work_keys_str_mv | AT shunsukeaoki safeintersectionmanagementwithcooperativeperceptionformixedtrafficofhumandrivenandautonomousvehicles AT ragunathanrajkumar safeintersectionmanagementwithcooperativeperceptionformixedtrafficofhumandrivenandautonomousvehicles |