Fault diagnosis of rotating parts integrating transfer learning and ConvNeXt model
Abstract This paper proposes a fault diagnosis method for rotating machinery that integrates transfer learning with the ConvNeXt model (TL-CoCNN), addressing challenges such as small sample sizes and varying operating conditions. To meet the input requirements of the model while minimizing feature l...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-024-84783-5 |