Improving Data Augmentation for YOLOv5 Using Enhanced Segment Anything Model

As one of the state-of-the-art object detection algorithms, YOLOv5 relies heavily on the quality of the training dataset. In order to improve the detection accuracy and performance of YOLOv5 and to reduce its false positive and false negative rates, we propose to improve the Segment Anything Model (...

Full description

Bibliographic Details
Main Authors: Benyu Xu, Su Yu
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/5/1819