SEMANTIC SEGMENTATION OF AERIAL IMAGERY VIA MULTI-SCALE SHUFFLING CONVOLUTIONAL NEURAL NETWORKS WITH DEEP SUPERVISION

In this paper, we address the semantic segmentation of aerial imagery based on the use of multi-modal data given in the form of true orthophotos and the corresponding Digital Surface Models (DSMs). We present the Deeply-supervised Shuffling Convolutional Neural Network (DSCNN) representing a multi-s...

Full description

Bibliographic Details
Main Authors: K. Chen, M. Weinmann, X. Sun, M. Yan, S. Hinz, B. Jutzi
Format: Article
Language:English
Published: Copernicus Publications 2018-09-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-1/29/2018/isprs-annals-IV-1-29-2018.pdf