The unit groups of semisimple group algebras of some non-metabelian groups of order 144
We consider all the non-metabelian groups $G$ of order $144$ that have exponent either 36 or 72 and deduce the unit group $U(\mathbb{F}_qG)$ of semisimple group algebra $\mathbb{F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Mathematics of the Czech Academy of Science
2023-12-01
|
Series: | Mathematica Bohemica |
Subjects: | |
Online Access: | http://mb.math.cas.cz/full/148/4/mb148_4_14.pdf |