Rigorous optimisation of multilinear discriminant analysis with Tucker and PARAFAC structures
Abstract Background We propose rigorously optimised supervised feature extraction methods for multilinear data based on Multilinear Discriminant Analysis (MDA) and demonstrate their usage on Electroencephalography (EEG) and simulated data. While existing MDA methods use heuristic optimisation proced...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-05-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-018-2188-0 |