Making machine learning matter to clinicians: model actionability in medical decision-making

Abstract Machine learning (ML) has the potential to transform patient care and outcomes. However, there are important differences between measuring the performance of ML models in silico and usefulness at the point of care. One lens to use to evaluate models during early development is actionability...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Daniel E. Ehrmann, Shalmali Joshi, Sebastian D. Goodfellow, Mjaye L. Mazwi, Danny Eytan
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: Nature Portfolio 2023-01-01
Sarja:npj Digital Medicine
Linkit:https://doi.org/10.1038/s41746-023-00753-7