An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
Hlavní autoři: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Wiley
2024-09-01
|
Edice: | IET Networks |
Témata: | |
On-line přístup: | https://doi.org/10.1049/ntw2.12134 |
Podobné jednotky
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
Autor: Monika Roopak, a další
Vydáno: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
Autor: Weijie Zhang, a další
Vydáno: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
Autor: Kuburat Oyeranti Adefemi Alimi, a další
Vydáno: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
Autor: Habibollah Mazarei, a další
Vydáno: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
Autor: Aswad Firas Mohammed, a další
Vydáno: (2023-01-01)