An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
主要な著者: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Wiley
2024-09-01
|
シリーズ: | IET Networks |
主題: | |
オンライン・アクセス: | https://doi.org/10.1049/ntw2.12134 |
類似資料
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
著者:: Monika Roopak, 等
出版事項: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
著者:: Weijie Zhang, 等
出版事項: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
著者:: Kuburat Oyeranti Adefemi Alimi, 等
出版事項: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
著者:: Habibollah Mazarei, 等
出版事項: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
著者:: Aswad Firas Mohammed, 等
出版事項: (2023-01-01)