Machine learning and LHC event generation
First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generat...
Full description
Bibliographic Details
Main Author: |
Anja Butter, Tilman Plehn, Steffen Schumann, Simon Badger, Sascha Caron, Kyle Cranmer, Francesco Armando Di Bello, Etienne Dreyer, Stefano Forte, Sanmay Ganguly, Dorival Gonçalves, Eilam Gross, Theo Heimel, Gudrun Heinrich, Lukas Heinrich, Alexander Held, Stefan Höche, Jessica N. Howard, Philip Ilten, Joshua Isaacson, Timo Janßen, Stephen Jones, Marumi Kado, Michael Kagan, Gregor Kasieczka, Felix Kling, Sabine Kraml, Claudius Krause, Frank Krauss, Kevin Kröninger, Rahool Kumar Barman, Michel Luchmann, Vitaly Magerya, Daniel Maitre, Bogdan Malaescu, Fabio Maltoni, Till Martini, Olivier Mattelaer, Benjamin Nachman, Sebastian Pitz, Juan Rojo, Matthew Schwartz, David Shih, Frank Siegert, Roy Stegeman, Bob Stienen, Jesse Thaler, Rob Verheyen, Daniel Whiteson, Ramon Winterhalder, Jure Zupan |
Format: | Article
|
Language: | English |
Published: |
SciPost
2023-04-01
|
Series: | SciPost Physics
|
Online Access: | https://scipost.org/SciPostPhys.14.4.079
|