The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
Let $ q $ be an even prime power and let $ \mathbb{F}_{q} $ be the finite field of $ q $ elements. Let $ f $ be a nonzero polynomial over $ \mathbb{F}_{q^2} $ of the form $ f = a_{1}x_{1}^{m_{1}}+\dots+a_{s}x_{s}^{m_{s}}+y_{1}y_{2}+\dots+y_{n-1}y_{n}+y_{n-2t-1}^{2}+\dots +y_{n-3}^2+y_{n-1}^{2}$ $+b_...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2023-06-01
|
Series: | Electronic Research Archive |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/era.2023219?viewType=HTML |