The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields

Let $ q $ be an even prime power and let $ \mathbb{F}_{q} $ be the finite field of $ q $ elements. Let $ f $ be a nonzero polynomial over $ \mathbb{F}_{q^2} $ of the form $ f = a_{1}x_{1}^{m_{1}}+\dots+a_{s}x_{s}^{m_{s}}+y_{1}y_{2}+\dots+y_{n-1}y_{n}+y_{n-2t-1}^{2}+\dots +y_{n-3}^2+y_{n-1}^{2}$ $+b_...

Full description

Bibliographic Details
Main Authors: Qinlong Chen, Wei Cao
Format: Article
Language:English
Published: AIMS Press 2023-06-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2023219?viewType=HTML
_version_ 1827823146178183168
author Qinlong Chen
Wei Cao
author_facet Qinlong Chen
Wei Cao
author_sort Qinlong Chen
collection DOAJ
description Let $ q $ be an even prime power and let $ \mathbb{F}_{q} $ be the finite field of $ q $ elements. Let $ f $ be a nonzero polynomial over $ \mathbb{F}_{q^2} $ of the form $ f = a_{1}x_{1}^{m_{1}}+\dots+a_{s}x_{s}^{m_{s}}+y_{1}y_{2}+\dots+y_{n-1}y_{n}+y_{n-2t-1}^{2}+\dots +y_{n-3}^2+y_{n-1}^{2}$ $+b_{t}y_{n-2t}^{2}+ $ $ \dots +b_{1}y_{n-2}^{2}+b_{0}y_{n}^{2} $, where $ a_{i}, b_j\in \mathbb{F}_{q^{2}}^{*}, $ $ m_i\ne 1, $ $ (m_{i}, m_{k}) = 1, $ $ i\ne k, $ $ m_{i}|(q+1), $ $ m_{i}\in \mathbb{Z}^{+}, $ $ 2|n $, $ n > 2 $, $ 0\leq t\leq \frac{n}{2}-2 $, $ {\mathrm{Tr}}_{\mathbb{F}_{q^2}/\mathbb{F}_{2}}(b_{j}) = 1 $ for $ i, k = 1, \dots, s $ and $ j = 0, 1, \dots, t $. For each $ b \in \mathbb{F}_{q^2} $, let $ N_{q^2}(f = b) $ denote the number of $ \mathbb{F}_{q^2} $-rational points on the affine hypersurface $ f = b $. In this paper, we obtain the formula of $ N_{q^2}(f = b) $ by using the Jacobi sums, Gauss sums and the results of quadratic form in finite fields.
first_indexed 2024-03-12T02:07:01Z
format Article
id doaj.art-34c0c6bb7d2e47a09acb4694418e110e
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-03-12T02:07:01Z
publishDate 2023-06-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-34c0c6bb7d2e47a09acb4694418e110e2023-09-07T02:30:52ZengAIMS PressElectronic Research Archive2688-15942023-06-013174303431210.3934/era.2023219The number of rational points on a class of hypersurfaces in quadratic extensions of finite fieldsQinlong Chen 0Wei Cao 1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian Province, ChinaSchool of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian Province, ChinaLet $ q $ be an even prime power and let $ \mathbb{F}_{q} $ be the finite field of $ q $ elements. Let $ f $ be a nonzero polynomial over $ \mathbb{F}_{q^2} $ of the form $ f = a_{1}x_{1}^{m_{1}}+\dots+a_{s}x_{s}^{m_{s}}+y_{1}y_{2}+\dots+y_{n-1}y_{n}+y_{n-2t-1}^{2}+\dots +y_{n-3}^2+y_{n-1}^{2}$ $+b_{t}y_{n-2t}^{2}+ $ $ \dots +b_{1}y_{n-2}^{2}+b_{0}y_{n}^{2} $, where $ a_{i}, b_j\in \mathbb{F}_{q^{2}}^{*}, $ $ m_i\ne 1, $ $ (m_{i}, m_{k}) = 1, $ $ i\ne k, $ $ m_{i}|(q+1), $ $ m_{i}\in \mathbb{Z}^{+}, $ $ 2|n $, $ n > 2 $, $ 0\leq t\leq \frac{n}{2}-2 $, $ {\mathrm{Tr}}_{\mathbb{F}_{q^2}/\mathbb{F}_{2}}(b_{j}) = 1 $ for $ i, k = 1, \dots, s $ and $ j = 0, 1, \dots, t $. For each $ b \in \mathbb{F}_{q^2} $, let $ N_{q^2}(f = b) $ denote the number of $ \mathbb{F}_{q^2} $-rational points on the affine hypersurface $ f = b $. In this paper, we obtain the formula of $ N_{q^2}(f = b) $ by using the Jacobi sums, Gauss sums and the results of quadratic form in finite fields.https://www.aimspress.com/article/doi/10.3934/era.2023219?viewType=HTMLfinite fieldpolynomialjacobi sumgauss sum
spellingShingle Qinlong Chen
Wei Cao
The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
Electronic Research Archive
finite field
polynomial
jacobi sum
gauss sum
title The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
title_full The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
title_fullStr The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
title_full_unstemmed The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
title_short The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
title_sort number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
topic finite field
polynomial
jacobi sum
gauss sum
url https://www.aimspress.com/article/doi/10.3934/era.2023219?viewType=HTML
work_keys_str_mv AT qinlongchen thenumberofrationalpointsonaclassofhypersurfacesinquadraticextensionsoffinitefields
AT weicao thenumberofrationalpointsonaclassofhypersurfacesinquadraticextensionsoffinitefields
AT qinlongchen numberofrationalpointsonaclassofhypersurfacesinquadraticextensionsoffinitefields
AT weicao numberofrationalpointsonaclassofhypersurfacesinquadraticextensionsoffinitefields