Anomaly detection based on a deep graph convolutional neural network for reliability improvement
Effective anomaly detection in power grid engineering is essential for ensuring the reliability of dispatch and operation. Traditional anomaly detection methods based on manual review and expert experience cannot be adapted to the current rapid increases in project data. In this work, to address thi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2024-01-01
|
Series: | Frontiers in Energy Research |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fenrg.2024.1345361/full |