Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism
Traditionally, the neurological correlates of IQ test questions are characterized qualitatively in terms of ‘control of attention’ and ‘working memory.’ In this report we attempt to characterize each IQ test question quantitatively by two factors: a) the number of disparate objects that have to be i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Pensoft Publishers
2017-04-01
|
Series: | Research Ideas and Outcomes |
Online Access: | https://riojournal.com/article/13239/ |
_version_ | 1818758813697703936 |
---|---|
author | Andrey Vyshedskiy Rita Dunn Irene Piryatinsky |
author_facet | Andrey Vyshedskiy Rita Dunn Irene Piryatinsky |
author_sort | Andrey Vyshedskiy |
collection | DOAJ |
description | Traditionally, the neurological correlates of IQ test questions are characterized qualitatively in terms of ‘control of attention’ and ‘working memory.’ In this report we attempt to characterize each IQ test question quantitatively by two factors: a) the number of disparate objects that have to be imagined in concert in order to solve the problem and, b) the amount of recruited posterior cortex territory. With such a classification, an IQ test can be understood on a neuronal level and a subject’s IQ score could be interpreted in terms of specific neurological mechanisms available to the subject.
Here we present the results of an analysis of the three most popular nonverbal IQ tests: Test of Nonverbal Intelligence (TONI-4), Standard Raven's Progressive Matrices, and Wechsler Intelligence Scale for Children (WISC-V). Our analysis shows that approximately half of all questions (52±0.02%) are limited to mental computations involving only a single object; these easier questions are found towards the beginning of each test. More difficult questions located towards the end of each test rely on mental synthesis of several disparate objects and the number of objects involved in computations gradually increases with question difficulty. These more challenging questions require the organization of wider posterior cortex networks by the lateral prefrontal cortex (PFC). This conclusion is in line with neuroimaging studies showing that activation level of the lateral PFC and the posterior cortex positively correlates with task difficulty. This analysis has direct implications for brain pathophysiology and, specifically, for therapeutic interventions for children with language impairment, most notably for children with Autism Spectrum Disorder (ASD) and other developmental disorders. |
first_indexed | 2024-12-18T06:32:48Z |
format | Article |
id | doaj.art-35443af3e7eb4c1c9c40ad4ab570f0c3 |
institution | Directory Open Access Journal |
issn | 2367-7163 |
language | English |
last_indexed | 2024-12-18T06:32:48Z |
publishDate | 2017-04-01 |
publisher | Pensoft Publishers |
record_format | Article |
series | Research Ideas and Outcomes |
spelling | doaj.art-35443af3e7eb4c1c9c40ad4ab570f0c32022-12-21T21:17:52ZengPensoft PublishersResearch Ideas and Outcomes2367-71632017-04-01314010.3897/rio.3.e1323913239Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autismAndrey Vyshedskiy0Rita Dunn1Irene Piryatinsky2Boston UniversityImagiRation LLCHarvard Medical SchoolTraditionally, the neurological correlates of IQ test questions are characterized qualitatively in terms of ‘control of attention’ and ‘working memory.’ In this report we attempt to characterize each IQ test question quantitatively by two factors: a) the number of disparate objects that have to be imagined in concert in order to solve the problem and, b) the amount of recruited posterior cortex territory. With such a classification, an IQ test can be understood on a neuronal level and a subject’s IQ score could be interpreted in terms of specific neurological mechanisms available to the subject. Here we present the results of an analysis of the three most popular nonverbal IQ tests: Test of Nonverbal Intelligence (TONI-4), Standard Raven's Progressive Matrices, and Wechsler Intelligence Scale for Children (WISC-V). Our analysis shows that approximately half of all questions (52±0.02%) are limited to mental computations involving only a single object; these easier questions are found towards the beginning of each test. More difficult questions located towards the end of each test rely on mental synthesis of several disparate objects and the number of objects involved in computations gradually increases with question difficulty. These more challenging questions require the organization of wider posterior cortex networks by the lateral prefrontal cortex (PFC). This conclusion is in line with neuroimaging studies showing that activation level of the lateral PFC and the posterior cortex positively correlates with task difficulty. This analysis has direct implications for brain pathophysiology and, specifically, for therapeutic interventions for children with language impairment, most notably for children with Autism Spectrum Disorder (ASD) and other developmental disorders.https://riojournal.com/article/13239/ |
spellingShingle | Andrey Vyshedskiy Rita Dunn Irene Piryatinsky Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism Research Ideas and Outcomes |
title | Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism |
title_full | Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism |
title_fullStr | Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism |
title_full_unstemmed | Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism |
title_short | Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism |
title_sort | neurobiological mechanisms for nonverbal iq tests implications for instruction of nonverbal children with autism |
url | https://riojournal.com/article/13239/ |
work_keys_str_mv | AT andreyvyshedskiy neurobiologicalmechanismsfornonverbaliqtestsimplicationsforinstructionofnonverbalchildrenwithautism AT ritadunn neurobiologicalmechanismsfornonverbaliqtestsimplicationsforinstructionofnonverbalchildrenwithautism AT irenepiryatinsky neurobiologicalmechanismsfornonverbaliqtestsimplicationsforinstructionofnonverbalchildrenwithautism |