Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness

The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Al...

ver descrição completa

Detalhes bibliográficos
Principais autores: Corder Nathan, Yang Shu
Formato: Artigo
Idioma:English
Publicado em: De Gruyter 2020-12-01
coleção:Journal of Causal Inference
Assuntos:
Acesso em linha:https://doi.org/10.1515/jci-2019-0024