Periodic solutions of the neutral Duffing Equations

We consider the neutral delay Duffing Equations of the form $$ax''(t)+bx'(t)+cx(t)+g(x(t-\tau_1), \ x'(t-\tau_2), x''(t-\tau_3))=p(t)=p(t+2\pi).$$ and establish a sufficient coudition for the existence of $2\pi$-periodic solution of above equations.

Bibliographic Details
Main Authors: Zicheng Wang, Z. Zhang, J. Yu
Format: Article
Language:English
Published: University of Szeged 2000-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=62