From Hörmander’s $L^2$-estimates to partial positivity
In this article, using a twisted version of Hörmander’s $L^2$-estimate, we give new characterizations of notions of partial positivity, which are uniform $q$-positivity and RC-positivity. We also discuss the definition of uniform $q$-positivity for singular Hermitian metrics.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2021-03-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.168/ |