Lifelong Continual Learning for Anomaly Detection: New Challenges, Perspectives, and Insights
Anomaly detection is of paramount importance in many real-world domains characterized by evolving behavior, such as monitoring cyber-physical systems, human conditions and network traffic. Current research in anomaly detection leverages offline learning working with static data or online learning fo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10473036/ |