Generalized uniformly continuous solution operators and inhomogeneous fractional evolution equations with variable coefficients

We consider Cauchy problem for inhomogeneous fractional evolution equations with Caputo fractional derivatives of order $0<\alpha<1$ and variable coefficients depending on $x$. In order to solve this problem we introduce generalized uniformly continuous solution operators and use them to o...

Full description

Bibliographic Details
Main Authors: Milos Japundzic, Danijela Rajter-Ciric
Format: Article
Language:English
Published: Texas State University 2017-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/293/abstr.html