Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
With current advances in automated driving, optical sensors like cameras and LiDARs are playing an increasingly important role in modern driver assistance systems. However, these sensors face challenges from adverse weather effects like fog and precipitation, which significantly degrade the sensor p...
Hlavní autoři: | Marcel Kettelgerdes, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, Gordon Elger |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2024-06-01
|
Edice: | Remote Sensing |
Témata: | |
On-line přístup: | https://www.mdpi.com/2072-4292/16/13/2407 |
Podobné jednotky
-
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
Autor: Jianqing Wu, a další
Vydáno: (2020-06-01) -
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
Autor: Wing Yi Pao, a další
Vydáno: (2024-05-01) -
Weather /
Autor: 597827 Rubin, Joel author
Vydáno: (c200) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
Autor: Jinho Lee, a další
Vydáno: (2022-07-01) -
Towards a Model of Snow Accretion for Autonomous Vehicles
Autor: Mateus Carvalho, a další
Vydáno: (2024-04-01)