Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
With current advances in automated driving, optical sensors like cameras and LiDARs are playing an increasingly important role in modern driver assistance systems. However, these sensors face challenges from adverse weather effects like fog and precipitation, which significantly degrade the sensor p...
主要な著者: | Marcel Kettelgerdes, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, Gordon Elger |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2024-06-01
|
シリーズ: | Remote Sensing |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2072-4292/16/13/2407 |
類似資料
-
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
著者:: Jianqing Wu, 等
出版事項: (2020-06-01) -
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
著者:: Wing Yi Pao, 等
出版事項: (2024-05-01) -
Weather /
著者:: 597827 Rubin, Joel author
出版事項: (c200) -
Pedestrian Detection in Severe Weather Conditions
著者:: P. Tumas, 等
出版事項: (2020-01-01) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
著者:: Jinho Lee, 等
出版事項: (2022-07-01)