Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
With current advances in automated driving, optical sensors like cameras and LiDARs are playing an increasingly important role in modern driver assistance systems. However, these sensors face challenges from adverse weather effects like fog and precipitation, which significantly degrade the sensor p...
Главные авторы: | Marcel Kettelgerdes, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, Gordon Elger |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
MDPI AG
2024-06-01
|
Серии: | Remote Sensing |
Предметы: | |
Online-ссылка: | https://www.mdpi.com/2072-4292/16/13/2407 |
Схожие документы
-
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
по: Jianqing Wu, и др.
Опубликовано: (2020-06-01) -
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
по: Wing Yi Pao, и др.
Опубликовано: (2024-05-01) -
Weather /
по: 597827 Rubin, Joel author
Опубликовано: (c200) -
Pedestrian Detection in Severe Weather Conditions
по: P. Tumas, и др.
Опубликовано: (2020-01-01) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
по: Jinho Lee, и др.
Опубликовано: (2022-07-01)