Enhancing Cluster Accuracy in Diabetes Multimorbidity With Dirichlet Process Mixture Models
Clustering of diabetic multimorbidity data from EHRs is challenging due to patient heterogeneity, high-dimensional variables, sensitivity to parameter settings, and high computational demands, which complicate clustering processes and may result in suboptimal clustering results. These complex and im...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10816607/ |