Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection

Abstract Background Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemb...

Full description

Bibliographic Details
Main Authors: Aurélie Canaguier, Romane Guilbaud, Erwan Denis, Ghislaine Magdelenat, Caroline Belser, Benjamin Istace, Corinne Cruaud, Patrick Wincker, Marie-Christine Le Paslier, Patricia Faivre-Rampant, Valérie Barbe
Format: Article
Language:English
Published: BMC 2022-04-01
Series:BMC Genomics
Subjects:
Online Access:https://doi.org/10.1186/s12864-022-08499-4
_version_ 1818060813803454464
author Aurélie Canaguier
Romane Guilbaud
Erwan Denis
Ghislaine Magdelenat
Caroline Belser
Benjamin Istace
Corinne Cruaud
Patrick Wincker
Marie-Christine Le Paslier
Patricia Faivre-Rampant
Valérie Barbe
author_facet Aurélie Canaguier
Romane Guilbaud
Erwan Denis
Ghislaine Magdelenat
Caroline Belser
Benjamin Istace
Corinne Cruaud
Patrick Wincker
Marie-Christine Le Paslier
Patricia Faivre-Rampant
Valérie Barbe
author_sort Aurélie Canaguier
collection DOAJ
description Abstract Background Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). Results We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. Conclusions Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.
first_indexed 2024-12-10T13:38:23Z
format Article
id doaj.art-373c746965b140e4b5f751577c9c2f6e
institution Directory Open Access Journal
issn 1471-2164
language English
last_indexed 2024-12-10T13:38:23Z
publishDate 2022-04-01
publisher BMC
record_format Article
series BMC Genomics
spelling doaj.art-373c746965b140e4b5f751577c9c2f6e2022-12-22T01:46:46ZengBMCBMC Genomics1471-21642022-04-0123111710.1186/s12864-022-08499-4Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detectionAurélie Canaguier0Romane Guilbaud1Erwan Denis2Ghislaine Magdelenat3Caroline Belser4Benjamin Istace5Corinne Cruaud6Patrick Wincker7Marie-Christine Le Paslier8Patricia Faivre-Rampant9Valérie Barbe10Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGVUniversité Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGVGenoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-SaclayGenoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-SaclayGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayGenoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-SaclayGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayUniversité Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGVUniversité Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGVGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayAbstract Background Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). Results We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. Conclusions Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.https://doi.org/10.1186/s12864-022-08499-4Structural variationsOxford Nanopore technologiesBionano Genomics optical mappingHigh molecular weight DNAArabidopsis thaliana
spellingShingle Aurélie Canaguier
Romane Guilbaud
Erwan Denis
Ghislaine Magdelenat
Caroline Belser
Benjamin Istace
Corinne Cruaud
Patrick Wincker
Marie-Christine Le Paslier
Patricia Faivre-Rampant
Valérie Barbe
Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection
BMC Genomics
Structural variations
Oxford Nanopore technologies
Bionano Genomics optical mapping
High molecular weight DNA
Arabidopsis thaliana
title Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection
title_full Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection
title_fullStr Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection
title_full_unstemmed Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection
title_short Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection
title_sort oxford nanopore and bionano genomics technologies evaluation for plant structural variation detection
topic Structural variations
Oxford Nanopore technologies
Bionano Genomics optical mapping
High molecular weight DNA
Arabidopsis thaliana
url https://doi.org/10.1186/s12864-022-08499-4
work_keys_str_mv AT aureliecanaguier oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT romaneguilbaud oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT erwandenis oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT ghislainemagdelenat oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT carolinebelser oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT benjaministace oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT corinnecruaud oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT patrickwincker oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT mariechristinelepaslier oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT patriciafaivrerampant oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection
AT valeriebarbe oxfordnanoporeandbionanogenomicstechnologiesevaluationforplantstructuralvariationdetection