Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles

<p>Abstract</p> <p>Background</p> <p>Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, ne...

Full description

Bibliographic Details
Main Authors: Kong Lingxin, Wang Xiaodan, Zhang Guo-rong, Cao Haiyan, Geller Alfred I
Format: Article
Language:English
Published: BMC 2008-04-01
Series:BMC Neuroscience
Online Access:http://www.biomedcentral.com/1471-2202/9/37
_version_ 1828395336866988032
author Kong Lingxin
Wang Xiaodan
Zhang Guo-rong
Cao Haiyan
Geller Alfred I
author_facet Kong Lingxin
Wang Xiaodan
Zhang Guo-rong
Cao Haiyan
Geller Alfred I
author_sort Kong Lingxin
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) – glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression.</p> <p>Results</p> <p>Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal neuron-specific expression (83 to 93%) compared to either approach alone, and supported long-term (1 month) expression at levels similar to those observed using untargeted gene transfer.</p> <p>Conclusion</p> <p>Targeted gene transfer can be used in combination with neuronal-specific promoters to achieve a high level of nigrostriatal neuron-specific expression. Targeted gene transfer can be followed by long-term expression. Nigrostriatal neuron-specific expression may be useful for specific gene therapy approaches to Parkinson's disease or for genetic analyses of nigrostriatal neuron physiology.</p>
first_indexed 2024-12-10T08:09:54Z
format Article
id doaj.art-3821844aa12947ba97b0fe8e387902b4
institution Directory Open Access Journal
issn 1471-2202
language English
last_indexed 2024-12-10T08:09:54Z
publishDate 2008-04-01
publisher BMC
record_format Article
series BMC Neuroscience
spelling doaj.art-3821844aa12947ba97b0fe8e387902b42022-12-22T01:56:35ZengBMCBMC Neuroscience1471-22022008-04-01913710.1186/1471-2202-9-37Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particlesKong LingxinWang XiaodanZhang Guo-rongCao HaiyanGeller Alfred I<p>Abstract</p> <p>Background</p> <p>Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) – glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression.</p> <p>Results</p> <p>Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal neuron-specific expression (83 to 93%) compared to either approach alone, and supported long-term (1 month) expression at levels similar to those observed using untargeted gene transfer.</p> <p>Conclusion</p> <p>Targeted gene transfer can be used in combination with neuronal-specific promoters to achieve a high level of nigrostriatal neuron-specific expression. Targeted gene transfer can be followed by long-term expression. Nigrostriatal neuron-specific expression may be useful for specific gene therapy approaches to Parkinson's disease or for genetic analyses of nigrostriatal neuron physiology.</p>http://www.biomedcentral.com/1471-2202/9/37
spellingShingle Kong Lingxin
Wang Xiaodan
Zhang Guo-rong
Cao Haiyan
Geller Alfred I
Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
BMC Neuroscience
title Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
title_full Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
title_fullStr Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
title_full_unstemmed Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
title_short Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
title_sort enhanced nigrostriatal neuron specific long term expression by using neural specific promoters in combination with targeted gene transfer by modified helper virus free hsv 1 vector particles
url http://www.biomedcentral.com/1471-2202/9/37
work_keys_str_mv AT konglingxin enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles
AT wangxiaodan enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles
AT zhangguorong enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles
AT caohaiyan enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles
AT gelleralfredi enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles