Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm
Abstract This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and unique...
Main Authors: | Jiankang Liu, Wei Xu, Qin Guo |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-02-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13662-020-2520-7 |
Similar Items
-
Global attracting set and exponential decay of second-order neutral stochastic functional differential equations driven by fBm
by: Liping Xu, et al.
Published: (2017-05-01) -
Attracting and quasi-invariant sets of neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion
by: Pengju Duan, et al.
Published: (2017-11-01) -
Invariant and attracting sets of non-autonomous impulsive neutral integro-differential equations
by: Bing Li
Published: (2012-08-01) -
An Averaging Principle for Stochastic Fractional Differential Equations Driven by fBm Involving Impulses
by: Jiankang Liu, et al.
Published: (2022-05-01) -
Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay
by: Zuomao Yan, et al.
Published: (2013-03-01)