Using <i>In Situ</i> Polymerization to Increase Puncture Resistance and Induce Reversible Formability in Silk Membranes
Silk fibroin is an excellent biopolymer for application in a variety of areas, such as textiles, medicine, composites and as a novel material for additive manufacturing. In this work, silk membranes were surface modified by <i>in situ</i> polymerization of aqueous acrylic acid, initiated...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/10/2252 |