Lipschitz estimates for commutators of singular integral operators associated with the sections
Abstract Let H be Monge-Ampère singular integral operator, b ∈ L i p F β $b\in Lip_{\mathcal{F}}^{\beta}$ , and 1 / q = 1 / p − β $1/q=1/p-\beta$ . It is proved that the commutator [ b , H ] $[b,H]$ is bounded from L p ( R n , d μ ) $L^{p}(\mathbb{R}^{n},d\mu)$ to L q ( R n , d μ ) $L^{q}(\mathbb{R}...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1299-x |