Variational autoencoders learn transferrable representations of metabolomics data

Variable autoencoders offer an alternative way to interrogate metabolomic data and identify meaningful, non-linear relationships.

Bibliographic Details
Main Authors: Daniel P. Gomari, Annalise Schweickart, Leandro Cerchietti, Elisabeth Paietta, Hugo Fernandez, Hassen Al-Amin, Karsten Suhre, Jan Krumsiek
Format: Article
Language:English
Published: Nature Portfolio 2022-06-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-022-03579-3