Variational autoencoders learn transferrable representations of metabolomics data
Variable autoencoders offer an alternative way to interrogate metabolomic data and identify meaningful, non-linear relationships.
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-06-01
|
Series: | Communications Biology |
Online Access: | https://doi.org/10.1038/s42003-022-03579-3 |