On the spectrum of periodic perturbations of certain unbounded Jacobi operators

It is known that a purely off-diagonal Jacobi operator with coefficients \(a_n=n^{\alpha}\), \(\alpha\in(0,1]\), has a purely absolutely continuous spectrum filling the whole real axis. We show that a 2-periodic perturbation of these operators creates a non trivial gap in the spectrum.

Bibliographic Details
Main Author: Jaouad Sahbani
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2016-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3649.pdf