ZARISKI-LIKE SPACES OF CERTAIN MODULES
Let $R$ be a commutative ring with identity and $M$ be a unitary$R$-module. The primary-like spectrum $Spec_L(M)$ is thecollection of all primary-like submodules $Q$ such that $M/Q$ is aprimeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ isa prime submodule for all $Qin Spec_L(M)$. This...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahrood University of Technology
2014-01-01
|
Series: | Journal of Algebraic Systems |
Subjects: | |
Online Access: | http://jas.shahroodut.ac.ir/article_230_b7b37843a5fe23f4743e67cb83ccec30.pdf |