Fusion of Lightweight Networks and DeepSort for Fatigue Driving Detection Tracking Algorithm
The fatigue driving detection process faces issues such as a large number of parameters, low accuracy and insufficient continuous detection. To address these, this paper proposes a method combining enhanced YOLOv5s and DeepSort for fatigue driving detection. First, the improved Mobilenet_...
المؤلفون الرئيسيون: | Kai Xu, Fu Li, Deji Chen, Linlong Zhu, Quan Wang |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
IEEE
2024-01-01
|
سلاسل: | IEEE Access |
الموضوعات: | |
الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/10496102/ |
مواد مشابهة
-
Enhanced DeepSORT and StrongSORT for Multicattle Tracking With Optimized Detection and Re-Identification
حسب: Hyeon-Seok Sim, وآخرون
منشور في: (2025-01-01) -
Smart Logistics Warehouse Moving-Object Tracking Based on YOLOv5 and DeepSORT
حسب: Tingbo Xie, وآخرون
منشور في: (2023-09-01) -
On the Study of Joint YOLOv5-DeepSort Detection and Tracking Algorithm for <i>Rhynchophorus ferrugineus</i>
حسب: Shuai Wu, وآخرون
منشور في: (2025-02-01) -
Vehicle Multi-Object Detection and Tracking Algorithm Based on Improved You Only Look Once 5s Version and DeepSORT
حسب: Thioanh Bui, وآخرون
منشور في: (2024-03-01) -
Solving traffic data occlusion problems in computer vision algorithms using DeepSORT and quantum computing
حسب: Frank Ngeni, وآخرون
منشور في: (2024-02-01)