DNA-Catalyzed Henry Reaction in Pure Water and the Striking Influence of Organic Buffer Systems

In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g...

Full description

Bibliographic Details
Main Authors: Marleen Häring, Maria M. Pérez-Madrigal, Dennis Kühbeck, Asja Pettignano, Françoise Quignard, David Díaz Díaz
Format: Article
Language:English
Published: MDPI AG 2015-03-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/20/3/4136
Description
Summary:In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde) and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding β-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated.
ISSN:1420-3049