Accounting for biological variation with linear mixed-effects modelling improves the quality of clinical metabolomics data
Metabolite profiles from biological samples suffer from both technical variations and subject-specific variants. To improve the quality of metabolomics data, conventional data processing methods can be employed to remove technical variations. These methods do not consider sources of subject variatio...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-01-01
|
Series: | Computational and Structural Biotechnology Journal |
Online Access: | http://www.sciencedirect.com/science/article/pii/S200103701930025X |