Matrix stiffness regulates osteoclast fate through integrin-dependent mechanotransduction
Osteoclasts ubiquitously participate in bone homeostasis, and their aberration leads to bone diseases, such as osteoporosis. Current clinical strategies by biochemical signaling molecules often perturb innate bone metabolism owing to the uncontrolled management of osteoclasts. Thus, an alternative s...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2023-09-01
|
Series: | Bioactive Materials |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2452199X2300107X |