MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel dista...
المؤلفون الرئيسيون: | I. Pölönen, K. Riihiaho, A.-M. Hakola, L. Annala |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Copernicus Publications
2020-08-01
|
سلاسل: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
الوصول للمادة أونلاين: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf |
مواد مشابهة
-
PIECEWISE ANOMALY DETECTION USING MINIMAL LEARNING MACHINE FOR HYPERSPECTRAL IMAGES
حسب: A.-M. Raita-Hakola, وآخرون
منشور في: (2021-06-01) -
A Do-It-Yourself Hyperspectral Imager Brought to Practice with Open-Source Python
حسب: Kimmo Aukusti Riihiaho, وآخرون
منشور في: (2021-02-01) -
PRACTICAL APPROACH FOR HYPERSPECTRAL IMAGE PROCESSING IN PYTHON
حسب: L. Annala, وآخرون
منشور في: (2018-04-01) -
FPI Based Hyperspectral Imager for the Complex Surfaces—Calibration, Illumination and Applications
حسب: Anna-Maria Raita-Hakola, وآخرون
منشور في: (2022-04-01) -
Hyperspectral Anomaly Detection Based on Machine Learning: An Overview
حسب: Yichu Xu, وآخرون
منشور في: (2022-01-01)