MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel dista...
相似书籍
-
PIECEWISE ANOMALY DETECTION USING MINIMAL LEARNING MACHINE FOR HYPERSPECTRAL IMAGES
由: A.-M. Raita-Hakola, et al.
出版: (2021-06-01) -
A Do-It-Yourself Hyperspectral Imager Brought to Practice with Open-Source Python
由: Kimmo Aukusti Riihiaho, et al.
出版: (2021-02-01) -
PRACTICAL APPROACH FOR HYPERSPECTRAL IMAGE PROCESSING IN PYTHON
由: L. Annala, et al.
出版: (2018-04-01) -
FPI Based Hyperspectral Imager for the Complex Surfaces—Calibration, Illumination and Applications
由: Anna-Maria Raita-Hakola, et al.
出版: (2022-04-01) -
Hyperspectral Anomaly Detection Based on Machine Learning: An Overview
由: Yichu Xu, et al.
出版: (2022-01-01)