Study of Restrained Network Structures for Wasserstein Generative Adversarial Networks (WGANs) on Numeric Data Augmentation
Some recent studies have suggested using Generative Adversarial Network (GAN) for numeric data over-sampling, which is to generate data for completing the imbalanced numeric data. Compared with the conventional over-sampling methods, taken SMOTE as an example, the recently-proposed GAN schemes fail...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9091163/ |