Application of Isokinetic Dynamometry Data in Predicting Gait Deviation Index Using Machine Learning in Stroke Patients: A Cross-Sectional Study
Background: Three-dimensional gait analysis, supported by advanced sensor systems, is a crucial component in the rehabilitation assessment of post-stroke hemiplegic patients. However, the sensor data generated from such analyses are often complex and challenging to interpret in clinical practice, re...
Huvudupphovsmän: | , , , , , , , |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
MDPI AG
2024-11-01
|
Serie: | Sensors |
Ämnen: | |
Länkar: | https://www.mdpi.com/1424-8220/24/22/7258 |