Identification of Maize Diseases Based on Dynamic Convolution and Tri-Attention Mechanism
Accurate, non-destructive classification of maize diseases is crucial for efficiently managing agricultural losses. While existing methods perform well in controlled environment dataset like PlantVillage, their accuracy often declines in real-world scenarios. In this work, ResNet50 is enhanced by in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10824797/ |