Identification of Smith–Magenis syndrome cases through an experimental evaluation of machine learning methods
This research work introduces a novel, nonintrusive method for the automatic identification of Smith–Magenis syndrome, traditionally studied through genetic markers. The method utilizes cepstral peak prominence and various machine learning techniques, relying on a single metric computed by the resea...
Huvudupphovsmän: | , , , , , , |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Frontiers Media S.A.
2024-03-01
|
Serie: | Frontiers in Computational Neuroscience |
Ämnen: | |
Länkar: | https://www.frontiersin.org/articles/10.3389/fncom.2024.1357607/full |