A hybrid of iterative Gauss–Newton and one-dimensional convolutional neural network for high-resolution electrical impedance tomography
We developed a processing method using benefits of both iterative Gauss–Newton (IGN) and a one-dimensional convolutional neural network (1D-CNN) for high-resolution electrical impedance tomography. The proposed method logically combines conductivity images reconstructed by different methods. The acc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2024-01-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/5.0185371 |