Decoding Imagined Speech From EEG Using Transfer Learning
We present a transfer learning-based approach for decoding imagined speech from electroencephalogram (EEG). Features are extracted simultaneously from multiple EEG channels, rather than separately from individual channels. This helps in capturing the interrelationships between the cortical regions....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9551930/ |