Deep Learning and Phenology Enhance Large-Scale Tree Species Classification in Aerial Imagery during a Biosecurity Response
The ability of deep convolutional neural networks (deep learning) to learn complex visual characteristics offers a new method to classify tree species using lower-cost data such as regional aerial RGB imagery. In this study, we use 10 cm resolution imagery and 4600 trees to develop a deep learning m...
Những tác giả chính: | Grant D. Pearse, Michael S. Watt, Julia Soewarto, Alan Y. S. Tan |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
MDPI AG
2021-05-01
|
Loạt: | Remote Sensing |
Những chủ đề: | |
Truy cập trực tuyến: | https://www.mdpi.com/2072-4292/13/9/1789 |
Những quyển sách tương tự
-
Individual Tree-Crown Detection and Species Identification in Heterogeneous Forests Using Aerial RGB Imagery and Deep Learning
Bằng: Mirela Beloiu, et al.
Được phát hành: (2023-03-01) -
Invertebrate biosecurity challenges in high productivity grassland: the New Zealand example
Bằng: Stephen Latham Goldson, et al.
Được phát hành: (2016-11-01) -
Pathological and molecular investigation of infectious bronchitis in broilers: analyzing the impact of biosecurity lapses
Bằng: Jelena Maletić, et al.
Được phát hành: (2025-02-01) -
Editorial: Promoting compliance with biosecurity in animal production
Bằng: Julia M. Smith, et al.
Được phát hành: (2023-06-01) -
Australia’s Grains Farm Biosecurity Program – a national initiative in plant biosecurity awareness, education and best management practice.
Bằng: Taylor-Hukins, Rachel, et al.
Được phát hành: (2018-11-01)