Active matrix metalloprotease-9 is associated with the collagen capsule surrounding the Madurella mycetomatis grain in mycetoma.
Madurella mycetomatis is the main causative organism of eumycetoma, a persistent, progressive granulomatous infection. After subcutaneous inoculation M. mycetomatis organizes itself in grains inside a granuloma with excessive collagen accumulation surrounding it. This could be contributing to treatm...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-03-01
|
Series: | PLoS Neglected Tropical Diseases |
Online Access: | http://europepmc.org/articles/PMC3967957?pdf=render |
Summary: | Madurella mycetomatis is the main causative organism of eumycetoma, a persistent, progressive granulomatous infection. After subcutaneous inoculation M. mycetomatis organizes itself in grains inside a granuloma with excessive collagen accumulation surrounding it. This could be contributing to treatment failure towards currently used antifungal agents. Due to their pivotal role in tissue remodelling, matrix metalloproteinases-2 (MMP-2) and 9 (MMP-9) or tissue inhibitor of metalloproteinases (TIMP) might be involved in this process. Local MMP-2 and MMP-9 expression was assessed by immunohistochemistry while absolute serum levels of these enzymes were determined in mycetoma patients and healthy controls by performing ELISAs. The presence of active MMP was determined by gelatin zymography. We found that both MMP-2 and MMP-9 are expressed in the mycetoma lesion, but the absolute MMP-2, -9, and TIMP-1 serum levels did not significantly differ between patients and controls. However, active MMP-9 was found in sera of 36% of M. mycetomatis infected subjects, whereas this active form was absent in sera of controls (P<0.0001). MMP-2, MMP-9, and TIMP-1 polymorphisms in mycetoma patients and healthy controls were determined through PCR-RFLP or sequencing. A higher T allele frequency in TIMP-1 (+372) SNP was observed in male M. mycetomatis mycetoma patients compared to controls. The presence of active MMP-9 in mycetoma patients suggest that MMP-9 is activated or synthesized by inflammatory cells upon M. mycetomatis infection. Inhibiting MMP-9 activity with doxycycline could prevent collagen accumulation in mycetoma, which in its turn might make the fungus more accessible to antifungal agents. |
---|---|
ISSN: | 1935-2727 1935-2735 |