Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM
The work is devoted to the study of the two-mass vibration-driven system motion in the viscous fluid. The system consists of a closed wedge-shaped body, placed in a fluid, and a movable internal mass, oscillated harmonically inside the shell. The described mechanical system simulates a vibration-dri...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ivannikov Institute for System Programming of the Russian Academy of Sciences
2018-10-01
|
Series: | Труды Института системного программирования РАН |
Subjects: | |
Online Access: | https://ispranproceedings.elpub.ru/jour/article/view/235 |
_version_ | 1818261366354477056 |
---|---|
author | A. N. Nuriev A. I. Yunusova O. N. Zaitseva |
author_facet | A. N. Nuriev A. I. Yunusova O. N. Zaitseva |
author_sort | A. N. Nuriev |
collection | DOAJ |
description | The work is devoted to the study of the two-mass vibration-driven system motion in the viscous fluid. The system consists of a closed wedge-shaped body, placed in a fluid, and a movable internal mass, oscillated harmonically inside the shell. The described mechanical system simulates a vibration-driven robot. The complex model of the robot interaction with the medium is considered, where fluid motion is described by the full unsteady Navier-Stokes equations. The problems of improving the efficiency of vibration-driven robot motion by choosing a special law internal mass movement are investigated. For these purposes, a comparative analysis of the characteristics of the motion and flow regimes around the robot are carried out for the simple harmonic law of the internal mass motion and the special two-phase law of the internal mass motion. The analysis of the flows around the robot and their influence on the characteristics (the average speed and the efficiency) of the movement is carried out. The numerical solution of the problem is carried out in the OpenFOAM open-source software package. The numerical scheme is implemented on the basis of the finite-volume discretization approach. For joint solution the Navier-Stokes equations and the mechanical system, which describes the interaction of components of vibration-driven robot and viscous media, a special iteration scheme is constructed. Results of the study show that the directional movement of the wedge-shaped vibration-driven robot is possible for both harmonic and two-phase laws of internal mass motion. In each of the cases it is possible to find stable regimes of motion observed in a wide range of Reynolds numbers. Analysis of average speed and efficiency of regimes allows finding the optimal parameters of vibration-driven robot motion. |
first_indexed | 2024-12-12T18:46:05Z |
format | Article |
id | doaj.art-43d3863113a04616908d92254731363d |
institution | Directory Open Access Journal |
issn | 2079-8156 2220-6426 |
language | English |
last_indexed | 2024-12-12T18:46:05Z |
publishDate | 2018-10-01 |
publisher | Ivannikov Institute for System Programming of the Russian Academy of Sciences |
record_format | Article |
series | Труды Института системного программирования РАН |
spelling | doaj.art-43d3863113a04616908d92254731363d2022-12-22T00:15:30ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-0129110111810.15514/ISPRAS-2017-29(1)-7235Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAMA. N. Nuriev0A. I. Yunusova1O. N. Zaitseva2Нижегородский государственный университет; Казанский федеральный университетКазанский национальный исследовательский технологический университетКазанский федеральный университетThe work is devoted to the study of the two-mass vibration-driven system motion in the viscous fluid. The system consists of a closed wedge-shaped body, placed in a fluid, and a movable internal mass, oscillated harmonically inside the shell. The described mechanical system simulates a vibration-driven robot. The complex model of the robot interaction with the medium is considered, where fluid motion is described by the full unsteady Navier-Stokes equations. The problems of improving the efficiency of vibration-driven robot motion by choosing a special law internal mass movement are investigated. For these purposes, a comparative analysis of the characteristics of the motion and flow regimes around the robot are carried out for the simple harmonic law of the internal mass motion and the special two-phase law of the internal mass motion. The analysis of the flows around the robot and their influence on the characteristics (the average speed and the efficiency) of the movement is carried out. The numerical solution of the problem is carried out in the OpenFOAM open-source software package. The numerical scheme is implemented on the basis of the finite-volume discretization approach. For joint solution the Navier-Stokes equations and the mechanical system, which describes the interaction of components of vibration-driven robot and viscous media, a special iteration scheme is constructed. Results of the study show that the directional movement of the wedge-shaped vibration-driven robot is possible for both harmonic and two-phase laws of internal mass motion. In each of the cases it is possible to find stable regimes of motion observed in a wide range of Reynolds numbers. Analysis of average speed and efficiency of regimes allows finding the optimal parameters of vibration-driven robot motion.https://ispranproceedings.elpub.ru/jour/article/view/235вибророботвязкая жидкостьсистема уравнений навье-стоксарежимы движенияэффективность движения |
spellingShingle | A. N. Nuriev A. I. Yunusova O. N. Zaitseva Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM Труды Института системного программирования РАН виброробот вязкая жидкость система уравнений навье-стокса режимы движения эффективность движения |
title | Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM |
title_full | Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM |
title_fullStr | Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM |
title_full_unstemmed | Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM |
title_short | Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM |
title_sort | simulation of the wedge shaped vibration driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package openfoam |
topic | виброробот вязкая жидкость система уравнений навье-стокса режимы движения эффективность движения |
url | https://ispranproceedings.elpub.ru/jour/article/view/235 |
work_keys_str_mv | AT annuriev simulationofthewedgeshapedvibrationdrivenrobotmotionintheviscousfluidforcedbydifferentlawsofinternalmassmovementinthepackageopenfoam AT aiyunusova simulationofthewedgeshapedvibrationdrivenrobotmotionintheviscousfluidforcedbydifferentlawsofinternalmassmovementinthepackageopenfoam AT onzaitseva simulationofthewedgeshapedvibrationdrivenrobotmotionintheviscousfluidforcedbydifferentlawsofinternalmassmovementinthepackageopenfoam |