Real-Time Event-Driven Learning in Highly Volatile Systems: A Case for Embedded Machine Learning for SCADA Systems
Extracting key system parameters and their impact on state transition is a necessity for knowledge and data engineering. In Decision Support Systems, the quest for yet more efficient and faster methods of sensitivity analysis (SA) and feature extraction in complex and volatile systems persists. A ne...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9770808/ |