Robust 2DPCA by Tℓ₁ Criterion Maximization for Image Recognition
Two-dimensional principal component analysis (2DPCA) has been widely used to extract image features. As opposed to PCA, 2DPCA directly treats 2D matrices to extract image features instead of transforming 2D matrices into vectors. However, the classical 2DPCA based on F-norm square is sensitive to no...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9316274/ |