Identifying top ten predictors of type 2 diabetes through machine learning analysis of UK Biobank data
Abstract The study aimed to identify the most predictive factors for the development of type 2 diabetes. Using an XGboost classification model, we projected type 2 diabetes incidence over a 10-year horizon. We deliberately minimized the selection of baseline factors to fully exploit the rich dataset...
मुख्य लेखकों: | , , , |
---|---|
स्वरूप: | लेख |
भाषा: | English |
प्रकाशित: |
Nature Portfolio
2024-01-01
|
श्रृंखला: | Scientific Reports |
ऑनलाइन पहुंच: | https://doi.org/10.1038/s41598-024-52023-5 |