Parallel isotope differential modeling for instationary 13C fluxomics at the genome scale
Background A precise map of the metabolic fluxome, the closest surrogate to the physiological phenotype, is becoming progressively more important in the metabolic engineering of photosynthetic organisms for biofuel and biomass production. For photosynthetic organisms, the state-of-the-art method for...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-06-01
|
Series: | Biotechnology for Biofuels |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13068-020-01737-5 |